
Blink 1.0

Final report Engineering Design (4WBB0)

November 1, 2021

Group no: 237
Name Student ID
Jeroen Beltman 1603442
Lisa Gerrits 1621718
Tom van Liempd 1544098
Thomas Toorenman 1639412
Gijs Vogels 1577514

1 Group effectiveness

To begin, an advantage is that the group contains five group members who all follow a different major. These
majors are: Mechanical Engineering, Medical Sciences and Technology, Computer Science, Automotive Technology
and Industrial Design. Therefore, there are a lot of different qualities in the group and this can be very useful for
a project. Some of the qualities can be used for the design, some for the electrical or programming part and some
for making a planning and writing the report.

1.1 First weeks of the project

Coming up with ideas is a strength of the group, because everyone came up with two or three ideas at the beginning
of the project and therefore the design goal and an idea was chosen very soon.

Then, a planning for the project progress was made, so that everyone knew all the different phases and deadlines
of the project. The second phase of the project was the concept phase. There was a lot of creativity in the group,
so the concept was made very soon.

1.2 Designing

After the design goal was chosen and the concept was finished, the designing phase started. Some group members
were good in designing, so there were not many designing issues. Sensors and actuators were chosen and then the
design was made, so everyone got a good image of how the product is going to look like. Designing is definitely
a strength of some group members.

There was also some knowledge about microcontrollers and programming for example, so that made it a bit easier
to know which microcontroller was needed for the product and how all the parts should be programmed as well.

1.3 Last weeks of the project

When the detailed design was finished, some parts needed to be 3D printed. One group member already had some
experience in 3D printing, so the parts were sent and 3D printed successfully.

There was also some knowledge about electrical equipment. Some parts needed to be soldered and although there
was not a lot of experience with soldering, this turned out very well in the end. This is because a quality of the
group is that everyone was motivated to learn and help with (new) things.

When the product was realized, the testing phase started. The product is tested during the meetings, but also
with other users. The testing phase went quite well.

1.4 Improvements and strengths

Halfway through the project, the group noticed that the same group members kept working on the same tasks,
so it was decided to change that. For example, make sure a group member who works almost exclusively on the
report also helps with the designing, programming or electrical part. Then, every group member is involved in
more than one task in the project. For the next group project, this is something that can be improved. Namely, it
should be better that every member is working on more tasks already at the beginning of the project and not only
from halfway through the project, because if a group member is doing several different tasks, he/she can learn
even more from the project.

When the group ran into a problem, everyone was immediately thinking about solutions and then the group could
continue working on the product, when there were problems, the group did not lose much time. Also, every
group member followed the planning of the project very well and therefore the deadlines such as the intermediate
presentation, the group evaluations and the final presentation were finished on time.

Overall, the group members collaborated very well and were motivated to make a good and original new product.
With all the mentioned knowledge of the group, but also with things that could be improved for the next time,
the project has been completed successfully.

2

2 Design goal

Approximately 13 percent of the Dutch population aged 40 years and older have a hearing loss of more than 35
decibels. This means that about 1.2 million people in the Netherlands have hearing impairments [1], 1.2 million
is already a large number, but just imagine how big this number is in the whole world. According to estimates of
the World Health Organization (WHO), more than 700 million people worldwide would have severe hearing loss in
the year 2050 [2]. Noise damage can cause hearing loss at a young age, but some people are born with a hearing
impairment or are born deaf due to heredity. Hearing impairments can have a large impact on someone’s daily life.
Take for example their life at home. People have to deal with many in-house activities and domestic appliances
every day, like the washing machine, the dishwasher and the doorbell.

Now imagine you are someone with a hearing impairment. When the doorbell rings, you are likely to not notice
the sound, which can result in you missing a package or an appointment. When the timer of the oven goes off you
can’t hear the alarm which can result in burnt dinner. These are problems that people with hearing impairments
have to deal with on the daily basis. Therefore, the design goal is to create an aid for people with a hearing
impairment to get notified when a domestic appliance uses sound. This can be facilitated by replacing sound for
notifications that require other senses like lighting and vibrations. The sounds from the domestic appliances will be
picked up by some sort of sensor. If the design goal is reached, people should be able to recognize the notifications
they would otherwise miss, and therefore give them an easier and more comfortable experience at home.

To get a clear and smooth start to the project the first step was to define a specific design question that goes as
follows: How can a product be made that helps people with hearing impairment to get notifications when domestic
devices make noise?

During the project a design process will be followed to answer this question and to hopefully fulfill our design goal.

Figure 1: Percentage of elderly with a hearing impairment

3

3 Functional design and solutions

When designing a new product, there are a lot of specifications to think about. The functional specifications are
all the specifications that are needed to create a working product for the user. These specifications are defined in
the concept phase of the project.

The MoSCoW method that can be seen below is a method used to clearly state all the functional specifications,
and will define what the design must have, should have, could have and won’t have.

3.1 MoSCoW Method

The MoSCoW method is a good way to classify (functional and technical) specifications.

3.1.1 Must have

These are specifications which you basically have no choice, but to implement them into your product. These are
often called constraints. The wristband that will be produced in this product also has some constraints. These
constraints will be listed below.

• The dimensions of the product must be such that it would fit the user’s wrist comfortably
Solution: To make sure it is comfortable to wear, the product becomes as compact as possible and not too
heavy to wear on the wrist.

• The product must be made with the budget of 70 euros
Solution: An inventory of all the parts is made to make sure that 70 euros or less than that is spent.

• The aid must function autonomously or interactively
Solution: A battery will be used to make the product autonomously. The product also interacts with the
users. A flowchart is made to visualize the interaction between them:

Figure 2: Flowchart

• The product must have a vibration sensor and a sound sensor as sensor and a light and vibration
motor as actuator
Solution: There are several sensors, for example sound and vibration sensors, to measure when for example
the door bell rings. These sensors will notify the microcontroller via WiFi. Then, the microcontroller will
activate the multicolour LED lamp and the vibration motor of the bracelet.

Sensors: sound sensor at the doorbell and the fire alarm and vibration sensor for the washing machine/dish
washer.

Actuators: multicolour LED lamp and a vibration motor

• The product must have a battery that complies with the five safety instructions
These safety instructions are the following:

1. Do not make any modifications to the battery

2. Use a voltage protection

4

3. Install a fuse in the circuit

4. Use the correct power supply when loading

5. Make sure all wiring is insulated

Solution: The product needs a battery in order to be wireless, so there is no other way than to follow the
five safety instructions to make sure a battery can be used.

3.1.2 Should have

These are specifications you have to meet to really fulfill the customer’s needs. These are often called requirements.
The wristband that will be produced in this project also has some important requirements. These requirements
can be seen below.

• The bracelet should have an adjustable strap
Solution: A strap that is adjustable must be chosen/made, otherwise not all people can wear the bracelet.

• The user should be able to turn off the actuator
Solution: If the user has noticed the notification because of the light and vibration, the user can turn it off
by pressing a button on the bracelet.

• The battery should be rechargeable
Solution: The bracelet should have a USB port in which a micro USB cable can be attached. This cable is
used to charge the battery.

• The product should be user-friendly
Solution: The product should be easy to use, so everyone can use it, also elderly. That’s why a bracelet is
chosen instead of just an app on smartphones. The product should be as compact as possible and easy to
understand.

3.1.3 Could have

These are specifications which are nice to have, but functionality of the product is not compromised if they are
not met. These are often called preferences. Also in this project, there will be some preferences and they will be
listed below.

• The product could have a feature to let the user configure the device
Solution: Design an app for the smartphone. The app should control the wristband. In the app you can set
which colour the light will be when for example the washing machine is finished.

• The product could give each object an unique vibration
Solution: It could be programmed that when the dishwasher is finished, the bracelet will vibrate 1 time,
when the washing machine is finished, the bracelet will vibrate 2 times and so on for all the objects involved.

3.1.4 Won’t have

These are specifications you already know you will not meet, and also do not need to meet. They are just there
as a reminder for the future. In this project there are also specifications that will not be put into the design, but
that could be implemented in the future. See the list below.

• The product won’t have display with touch screen
Solution: When the bracelet would have a touch screen, the multicolour LED lamp is not needed. The
programming part needs to be changed when it is just a display with touch screen.

• The product won’t have more lights, instead of one light
Solution: The bracelet should be a bit bigger than, because otherwise there is not enough space for more
lights. Also, each light should be linked to an object then.

5

4 Design concepts

Three different design concepts with the same design goal are made. These three different design concepts will
be evaluated separately and then the best design concept will be chosen. The three concepts are the following:
The smart wristband concept, the smart glasses concept, the hearing box concept. All concepts must have actua-
tor(s) and sensor(s). Several illustrations of these concepts are made, to make clear what the object should look like.

4.1 Smart Wristband Concept

This concept is made for people with an hearing impairment. The smart wristband will help these people to notice
when for example the doorbell, dishwasher or washing machine are ready. The actuators of the wristband will be a
multicolour LED lamp and a vibration motor. Then, various sensors (sound sensors and vibration sensors) can be
placed around the house, to trigger these actuators. The LED lamp and the vibration motor will be triggered when
for example the dishwasher is finished. Every object can get its own colour, so the user can easily know which
object they need to pay attention to. The vibration of the wristband is an extra tool to make for 100 percent sure
the user does not miss the notifications.

To build this wristband, a small programmable microcontroller is needed. The wristband will need to connect to
other sensors around the house wirelessly. This can easily be done via a Wi-Fi network that already exists in most
homes. The device ESP32 can be programmed and has built-in Wi-Fi support. It has a lot of possibilities to control
various things such as LEDs, motors and can connect to a wide range of sensors. This type of microcontroller
is very versatile, so it can be used both for the wristband and for all sensors around the house, which simplifies
the design and build process. When used for the sensors, it can be powered using a regular USB cable and power
adapter. The wristband will need to be powered using a battery.

In the picture the 3D drawing of the sensor housing for the sound sensor can be seen. This design has enough
space for the microcontroller, a hole for the power cord for the microcontroller and a bigger circular hole for the
sound sensor. On the side two parts stick out, which can be used to drill holes in and put screws through. The lid
for the housing has been made separately. For the vibration sensor the housing looks exactly the same, however
it does not have a circular hole because this sensor does not have such part.

Figure 3: Blueprint Figure 4: Sensor housing

4.1.1 Pro’s and con’s

Pro’s
- The wristband is easy to use for everyone, also for elderly
- The user will easily notice when for example the washing machine is ready, because of the LED light and the
vibration
- Button to turn the notifications off when the user has seen the notification

Con’s
- The user must wear it, otherwise there is a big chance the notification will be missed, because the wristband
does not make any sound, only flashing light and vibration

6

4.2 Smart Glasses Concept

This concept is also made for people with hearing impairment. It makes use of the same sensors as the wristband.
The sensors are placed at the places close to the preferred devices. When the sensor picks up a sound or vibration
it is triggered and sends a signal to the actuator. That is where this design is different than the wristband design.

In Figure 5 a front-view of the smart glasses can be seen. The design makes use of a regular frame of glasses,
with a box added to it. The box can be seen on the right. It contains the battery, the microcontroller and an
actuator. The actuator will be some sort of motor like a servomotor. When the sensor is triggered, the actuator
will start working. It will turn the arm with LED blinker in front of the glasses and thereafter the LED blinker will
start blinking, in the desired color. This way the user will be informed that a device is ready.

Figure 5: Smart Glasses Figure 6: Back view

In Figure 6 the back view of the glasses can be seen when it is activated. It can be seen that the arm is lowered
and the blinker is blinking. This is the way the user gets notified.

4.2.1 Pro’s and con’s

Pro’s
- The design is compact and can be placed on regular glasses.
- It will be very noticeable for the user when a device is ready or when a doorbell is rang.
- For people that are already used to wearing glasses, this design will not be too difficult to get used to.

Con’s
- The LED light is very close to the eye, which can be quite uncomfortable.
- Even though the arm with LED blinker is not as big as the entire glass, it could still cause dangerous situations
when it is lowered, because a bit of vision is lost due to the arm being in front of the eye.
- One side of the glasses will be a bit heavier than the other side, which could maybe feel uncomfortable.

4.3 Hearing box concept

The Hearing Box will be produced to help people with a hearing impairment, who, for example, otherwise may
not be able to hear whether the doorbell is ringing or whether their washing machine has finished washing their
clothes. In essence it’s an USB-wired box with LED lights and text-display for people with a hearing impairment.
The product shall be placed on multiple places in the house, such that a person is able to notice the LED lights
attached to the box. In addition, multiple sensors need to be placed such that vibrations or sounds of a machine
or object could be observed. The design for this product could be changed to any kind of object, however, in order
to keep the product as small as possible, a rectangular shape has been chosen.

The microcontroller, powered by an USB-cable, is placed inside this rectangular box. A text-display and two LED
lights will be attached to the microcontroller and be positioned on top of the Hearing Box, as depicted in Figure 7.

When a sensor has been triggered, a signal will be send to the microcontroller via Wi-Fi in which case it will
activate the LED lights and the display. The LED lights will start to blink and a specific message, corresponding
to the sound which has been observed, will be send via the display of the product. Once the user has seen the
notification, a button can be pressed to stop the LED’s blinking.

7

Figure 7: Quick sketch of the hearing box

4.3.1 Pro’s and con’s

Pro’s
- Due to the fact that it is a stationary object, it does not have to be wireless. Hence, a lower budget is needed
and safety is improved, since it does not need to use a battery.
- The product does not have to be carried around the house.
- In contrast to the wristband it is possible to use a text-display to display where the sensors have been triggered.

Con’s
- It needs to be placed in a lot of places, otherwise the LED lights will not be visible at any time.
- The message on the display may be unreadable for some people with bad eyesight.

8

5 Final design concept

There are several ways of fulfilling the requirements mentioned in chapter 3. When comparing the design concepts
from chapter 4, it is clear that the wristband has the edge over the Smart Glasses and the Hearing Box.

Whereas the wristband is located on the wrist of the user, the Hearing Box would need to be placed in several
different places to be visible at all times. This would make the Hearing Box extortionate compared to the wristband
since every box needs its own, separate, vital components. The Hearing Box itself will, therefore, cost around 25
euros per box. This excludes any sensors, which will also be around 10 euros per sensor. When making it fully
functional in a house, the costs would, therefore, easily exceed the budget of 70 euros. Moreover, when someone
covers the Hearing Box with, for example, a coat, someone would not be able to notice the LED or the text display.
The Smart Glasses may be a little uncomfortable to wear since the LED is close to the eyes and due to the imbalance
in weight. It may also not be as user-friendly as the wristband. Whereas someone can wear the wristband during
the day, someone with the Smart Glasses may want to switch glasses when he or she needs to use for example
reading glasses. There is also no way of turning off the notification on the glasses, hence someone will need to
wait some time for the notification to go away.

The wristband which is called Blink 1.0, does meet all of the functional specifications though. It is very user-
friendly, due to the fact that everyone can easily use it. It should be comfortable to wear since the size of the
strap can be adjusted in such a way that it will perfectly fit someone’s wrist. There is, in contrast to the Smart
Glasses, also a possibility to turn off the notification with a button and a user should be able to either see the
notification, using the LED or, for example, when the wristband has been covered by their sleeve, to feel it, using
the vibration motor. One of the most challenging aspects was the size of Blink 1.0, because the electronic parts
need a substantial amount of space. Even though it may look big as could be seen in image 1, it does not feel
like it, neither does it feel restraining. In Figure 8, a render of the final design concept can be seen. This figure
has the button and light as described before. In Figure 9, a picture of the mockup can be seen. This mockup was
made to give a better view on what the design should look like.

Figure 8: Render Final concept Figure 9: Preliminary design

It is somewhat innovative, since this is the only product that solely focuses on notifying a user when specific sounds
or vibrations have been noticed. There are already some smartwatches that can notify users when something
happens via sensors connecting with Smart Home. Moreover, there are wristbands for hearing impaired, however,
they vibrate whenever they notify a non-specific sound. Also, Blink is a lot cheaper and simpler than for example
a smartwatch, which is an advantage for the user.

The smartwatch can be difficult to understand for elderly people, because it has a lot of functions and a display.
Blink should be a lot easier to understand, because it does not have a touch screen display and less functions than
a smartwatch. When Blink is installed, the user can easily start using Blink.

9

6 Technical specification

The final design concept also has some technical specifications. Technical specifications are specifications the
product needs to do or have to be able to operate. The technical specifications will be mostly quantitative, as it
describes the different parts or functions that are needed to fulfill the functional part of the product. Below, the
technical specifications can be seen. First the requirements are stated, after which the chosen solution for this
requirement can be seen.

• The aid must function autonomously and interactively
In order to work autonomously a battery will be used. The battery used is a Lithium Ion Battery, 3.7V
and 1200 mAh. This battery will be connected to a microcontroller, which is a Wemos LOLIN D32. This
microcontroller has the ability to send and receive both analog and digital signals. Therefore it is suitable to
connect the sensors, button, vibration motor and LED directly to it. These microcontrollers will be connected
to each other via WiFi network.

• The product must have a vibration sensor and a sound sensor and the actuators are a vibration
motor and light
The wristband uses the following sensors and actuators:

– Vibration sensor: SW-420, operating voltage range: 3.3V - 5V, digital output, sensitivity adjustable
using potentiometer

– Sound sensor: KY-038, operating voltage range: 3.3V - 5V, sound detection range 50Hz - 20kHz,
digital and analog output, sensitivity adjustable using potentiometer for digital output

– Vibration motor: Adafruit 1201, operating voltage range 2.5V - 4.5V, current draw ∼90mA at 4.5V

– Light: RGB LED, 5mm Diffuse, common cathode

• The bracelet should have an adjustable strap
To make sure that the strap is adjustable, a Velcro strap will be used. This Velcro strap has length 300 mm
and width 20 mm. This way the strap can be adjusted to any preferred diameter with a maximum of 85
mm.

• The bracelet should be able to be used for a few hours without any problems
To make sure the product can be used for a while, there is a battery fitted in the product. The battery has
a capacity of 1200 mAh. The microcontroller consumes approximately 100-150 mAh. Therefore, the user
can use the bracelet for approximately 10 hours and then the user has to recharge the bracelet.

• The battery must comply with the safety regulations
To make sure the battery is safe, some extra parts are needed:

– The battery has voltage protection to protect it from undervoltage

– The microcontroller provides current-limiting and short-circuit protection

– The microcontroller manages the charging of the battery, and protects it from overcharging

• The user should be able to turn off the actuators
To be able to turn off the RGB light and the vibration motor, a button is used. The button used is a 7 mm
black button. The button is programmed such that the user can turn off the motor and LED by pressing
the button shortly. A long press (5 seconds) will turn the device off completely.

10

7 Detailing

When a concept is finalized, the next step is to start fabricating it. The detailing phase will start. In this phase
the main components will be made and will be detailed. The detailing phase is important because in this step
all the parts for the final design are made. The detailing phase of Blink can be divided into three main sections.
These are the following: the 3D printed parts, the wristband and the sensors. In this chapter the detailing of these
sections will be described.

7.1 Detailing the 3D printed parts

Figure 10: CAD Drawings

After thinking about the best material for the housing of the wristband, it
was decided to 3D print these parts. The advantage of 3D-printing is that a
design can be made in which all requirements of the part can be met. The
first step of designing a 3D print is therefore to make the design. This was
done in Siemens NX12. There were two parts that had to be printed. The top
and bottom of the housing. The bottom was made first and there were some
key components that had to be designed. The most important components
of the bottom are the legs through which the band can be put, the case in
which the vibration sensor can be fitted and the walls of the housing itself.
The top part is a rather simple part. It was designed as a cap to exactly fit on
top of the bottom part. It has three holes: one for the light, for the button
and one for the micro-usb port to charge the battery.

After the parts were designed, the files could be sent to the place where they
would be printed. Before sending the parts, it had to be checked if the printing
time would not exceed the maximum time of 5 hours. This could be done in
the program Ultimaker Cura.

When the parts were printed, they were put in the locker. The parts were
how they were designed and the electronics fitted, however they were not
nicely finished. The last step of detailing the 3D printed parts was there-
fore to sand down sharp edges, remove printing layers and supports, and to make sure that all electronics fitted.
The holes of the button and light had to be made bigger. After these steps the 3D printed parts were ready for use.

7.2 Detailing the wristband

It was decided that for the wristband an Arduino-based microcontroller would be the best choice, since they are
relatively cheap and can be easily programmed. Because the components should communicate over Wi-Fi, the
microcontroller should have integrated Wi-Fi capabilities, instead of an external Wi-Fi module which would be less
compact. Lastly, a battery-charger was needed for the wristband. Again, for compactness, a microcontroller with
this functionality integrated would be optimal.

There are two types of Arduino-based microcontrollers with integrated Wi-Fi: the ESP8266 and ESP32. For Blink,
the ESP32 was used, since it is the newer and offers more functionality in general. There are various different
variants available of the ESP32 microcontroller. Blink uses the WEMOS D32, as this board also has an integrated
battery-charger.

From a software perspective, the devices should be programmed to communicate with each other. In addition,
the user should be able to configure the wristband to fit their needs. To fit these requirements two main options
were considered:

• Local network communication:
The devices would communicate over the local network, without using the internet. When a device starts-up,
it scans the network for other Blink devices and connects to them, ready to exchange information.
An app on a smartphone could then look for these devices on the network and configure them.

• Communication over the internet (to a server):
The devices would all connect to a central server and communicate with it. The server would handle com-
munication with the devices and could relay information from one device to another.

This server could also provide a website/web-app to allow for the configuration of the devices.

11

In the end, the second option was chosen as it would be simpler. The server software can handle both the device
communication and the configuration options. For the first option, these requirements would need to handled
completely separately.

The software package that runs on the server is ThingsBoard. This is an open-source IoT platform that provides
a strong base-layer for the functionality needed for Blink. On top of this base-layer, the specific functionality
needed for Blink could easily be programmed. An Arduino SDK (Software Development Kit) already exists for
ThingsBoard [3], and hence this was used as the primary method for communication.

ThingsBoard communicates using remote procedure calls (RPC’s) which triggers some functionality on the device.
For example, in Appendix B, on line 315 the function rpc_notification can be found, which is triggered when a
notification is received.

7.3 Detailing the sensors

For simplicity, the WEMOS D32 microcontroller is used in both the wristband and the sensors, even though the
sensors do not use the battery-charger. The types of sensors used are compatible with Arduino-like boards and
were hence easy to connect and read data from. For the two sensors, the following logic is used to read their
values and send a notification:

• Sound sensor: The sound sensor is read using analog signals. This means that the microcontroller can read
a value for how loud the sound was. The microcontroller repeatedly reads the sensor’s value and stores the
highest value it received. Then, every 500 milliseconds, it compares this value with the threshold that was
set and sends a notification if the threshold was reached.

• Vibration sensor: The vibration sensor only sends a digital signal to the microcontroller. Hence, the
microcontroller can only read if there was a vibration, and cannot read the intensity of this vibration. The
logic that the microcontroller applies for the vibrations is the following: it will first smooth out the vibration
signal by checking that the sensor is vibrating for at least 20 seconds, after which the sensor should not
vibrate for at least 20 seconds. If these conditions are met, then a notification is sent.

The function that implements this logic is loop_sensor that can be found on line 403 in Appendix B.

12

8 Realization

Once all parts provided on the bill of materials have arrived, one should start by soldering the pin headers to the
micro-controller. This provides a better electrical connection between the pin headers and the micro-controller. In
order to check whether all parts work, all components should be tested. Testing happens after soldering the pin
headers, otherwise there could, for example,be faulty measurements with sensors or parts such as the LED would
not be able to work properly.

8.1 Testing Electronics

8.1.1 LED RGB

Figure 11: Circuit used for testing LED

It is possible to test the LED by connecting it to the micro-
controller as shown in Figure 11. The pins of the common
cathode RGB LED will have to be connected to the bread-
board and the micro-controller such that the longest pin is
connected to the ground (GND). When the GND-pin of the
LED is on the second position (counting from left), the pin
which controls the red light, the one on the first position,
will have to be connected to an 82 Ohm resistor and has
to be connected to an analog pin of the micro-controller.
Whereas the other two pins, which control the green and
blue lighting, located respectively on the third and fourth
position, will have to be connected to the 12 Ohm resistors
and should also be connected to different analog pins of the
micro-controller. The 3 analog pins that are used on the
micro-controller in Figure 11 are numbers 32, 33 and 25. By
setting the color-value of the LED RGB in the code of the
micro-controller to various values the LED could be tested.
After all tests have been successful, it is possible to solder
the pins of the LED.

8.1.2 Button

One side of the button should be connected to the 3V3, where the other side should be connected to the 10k
Ohm resistor and another pin, in this case of Blink 1.0 pin 15 has been chosen, while the other side of the resistor
should be connected to the GND.

8.1.3 Vibration motor

Figure 12: Schematic used for testing the vi-
bration motor

The vibration motor could be tested by connecting it in the way
shown in Figure 12. The red cable of the vibration motor (+)
is connected to the 3V3 pin of the micro-controller, whereas the
blue cable (-) is connected to the left pin of the flat side of the
NPN transistor as well as to the black side of the diode. The
diode should be connected to the 3V3 port with its grey side.
The middle pin of the NPN transistor is connected to an 1K Ohm
resistor, which is then connected to another analog pin of the
micro-controller. In the image to the left it is connected to pin
14. The right pin of the transistor will be connected to the GND.
After connecting the vibration motor and micro-controller to the
breadboard it is possible to test the vibration motor once the code
has been uploaded to the micro-controller. The vibration motor
was connected to the breadboard by using jumper wires (instead
of plugging it into the breadboard itself), since the wires of the
vibration motor were so small, that it was not possible to connect
them to the breadboard itself. Soldering could happen only after
the vibration motor has been tested and fit- tested.

13

After connecting all electronics to a breadboard and to the micro-
controller used for the wristband it will look as follows:

Figure 13: Circuit used for testing of the
wristband

Figure 14: Schematic of the electronics
for the wristband

8.1.4 Sensors

Figure 15: Circuit used for testing sen-
sors

The sound sensor and the vibration sensor should also be tested. The
sound sensor has 4 pins: The A0-pin is an analog pin to transfer an
analog signal, hence, when used, it will need to be connected to any
analog pin of the micro-controller. The G-pin is a pin which connects
the Ground of the sound sensor to the ground of the micro-controller,
hence it will need to be connected to the GND pin. The +-pin is a pin
for the operation voltage, hence it will need to be connected to the 3V3
of the micro-controller. The D0-pin is the pin for digital output based
on a predefined threshold through the potentiometer and the operation
voltage of the micro-controller, hence, when used, it will need to be
connected to a digital pin of the micro-controller. The sound sensor has
a potentiometer to define a threshold for the digital output pin. In order
to set this threshold, it will need to be tested and calibrated extensively.
The vibration sensor has 3 pins: The I/O-pin has to be connected to an
analog pin on the micro-controller. The GND-pin has to be connected
to the ground of the micro-controller. The VCC-pin has to be soldered
to the 3V3.The vibration sensor also has an adjuster for the sensitivity.
Once again, in order to set this to a certain limit, the product will need
to be tested and calibrated extensively.

14

8.2 Fit-testing the electronics

After having soldered everything together the electronics should be fit-tested into the 3D housing. The 3D housing
has been printed with 2 holes in it. One for the button and one for the RGB LED, as shown in Figure 16, after
fit-testing them, it was clear that they would both easily fit in the housing. There is also a hole for the vibration
motor, which at first was not big enough. By using a file (tool) it could be expanded such that the motor would fit,
as shown in Figure 17. However once trying to fit all the electronics, it was not possible to close the 3D housing.
Hence, white tape has been used to securely close the 3D housing.

Figure 16: Fit-testing the LED and button Figure 17: Fit-testing the vibration mo-
tor

Figure 18: Housing for the sound sensor

Two ABS boxes have been used as the
sensor-housings. A round hole has been
drilled in one of the housings since the
sound sensor needs to be in direct con-
tact with its surrounding and the housing
may act too much as a damper for the
sound. Above that a rectangular hole has
been made to fit the USB into the USB port
of the micro-controller in order to charge it
as could be seen in Figure 18. The other
housing only has a rectangular hole for the
USB port.

15

8.3 PfP / Soldering

By using the set-up provided in Figure 14, it is possible to test the entire electronics and, again, the parts separately.
Once confirmed that all parts work properly, one should start soldering the electronics for the wristband. The pins
of the LED should be soldered directly to the resistors and the ground, otherwise, it is not possible to fit the wires
in the 3D-housing. In order to solder the vibration motor, one should solder wires to the wires of the vibration
motor and solder the electronic parts such as the transistor in the way shown in Figure 14. An experiment PCB
has been used such that several inputs can be connected to the ground pin and the 3V3 pin. The ends of the
resistors have been cut off and have been used as a line to which the inputs could be connected. Otherwise, it
would be very difficult to connect all inputs to a single pin. Such PCB and it’s set-up is given in figure Figure 19.
The board has been cut to a size such that it will fit all the soldering and electronics and would still fit over the
micro-controller and in the housing. Still, the same schematic as Figure 14 has been used. Hence, providing an
overview of how everything is placed. After soldering everything together the assembly will look like Figure 20.

Figure 19: PCB used for this project with several
parts of the electronics

Figure 20: Final result of the soldering

8.4 Bill of materials

Product Supplier Price
3D-printed frame for the wristband TU/e e5
3x Wemos Lolin D32, Microcontroller Tinytronics e34.50
Lithium Ion Battery 3.7V 1200mAh, Battery SOS Solutions e11.99
RGB LED –5mm Common Cathode, Model: RGBLED5MMDIF, LED Tinytronics e0.25
82 Ohm Resistor (LED Resistor), Resistor Tinytronics e0.05
2x Metal Film Resistor 12.0 Ohm, Resistor, YAGEO Reichelt e0.16
Black Button 7mm, Button Tinytronics e0.50
10 kOhm Resistor, Resistor Tinytronics e0.05
1kOhm Resistor, Resistor Tinytronics e0.05
1N4001, Diode, Diodes Incorporated Kiwi-Electronics e0.13
Vibration Motor Ben’s Electronics e0.95
BC33725TA, Transistor, ONSEMI Farnell e0.50
KY-037 Sound Detection Sensor Module, Sensor, Electropeak Otronic e2.49
SW-420 Vibration Sensor Module, Sensor HobbyElectronica e1.95
Velcro Cable Ties 300 x 20 mm, Cable Ties Onlinekabelshop.nl e1.20
2x Multi ABS Housing, 85x56x26 mm black, Sensor Housing, Hammond Manufacturing Reichelt e8.44
Total costs e68.21

16

8.5 The final design

In Figure 21 the final design can be seen with all components attached. It can be seen that the device has all parts
that were desired. The wristband is fitted with a vibration motor to get the user’s attention and a RGB LED to
tell the user what kind of signal was received. For example, a blue light can be used for the dishwasher and a red
light for the doorbell. After the person has noticed the light, you can simply press the button on the wristband to
turn off the LED and the vibration motor. The button and LED light can be seen on top, and the wristband can
be strapped around the arm with the strap that can also be seen.

Figure 21: Final Design

17

9 Test plan and results

Blink 1.0 is an aid in the form of a bracelet for people that suffer from a hearing impairment. To make this product
work, Blink 1.0 has a couple of important functions. These functions are:

• The ability to recognize sounds and vibration from domestic appliances

• The ability to send signals from the sound sensor to the bracelet via WiFi

• A vibration motor to notify the user

• A flashing RGB LED to notify the user

A testing plan should be made for all the important functions of Blink 1.0, such that the product can be tested
correctly before production.

9.1 Sound detecting

The wristband makes use of sound detecting sensors for loud devices like the doorbell or fire alarm. These sensors
should be tested properly to see if they will work in the real world.
The questions before the testing are the following: What kind of experiment is useful to do and also what types of
graphs are shown in the results? For the sound sensor it is the most important thing to take a look at the volume
of sounds and also at how sensitive it is for the sounds in the surroundings.

The following experiment could therefore be done: The sound sensor is wired and is programmed in the software.
Then multiple sounds with different frequencies and tones will be played at different volumes. During those sounds
other, lower volume sounds will be played at the background. For example, the volume of the sound of a shutting
door. Then, it can be seen how much higher the sound of the doorbell is and a threshold can be chosen to make
sure the bracelet is only triggered when the doorbell rings. The graphs will have the time on the x axis and on the
y axis the volume of the sounds that the sensor has picked up.

9.1.1 Sound detecting: test results

The sound sensor for detecting the sound of the doorbell is tested and the results of the doorbell sounds are shown
in Figure 23.

In the graph, there are a number of peaks. The five highest peaks are the moments where the doorbell was actually
pressed. The other peaks are moments when a door was shutting loudly. It stands out that these peaks are much
lower than the peaks of the doorbell sound. It was important to measure the volume of another sound, because
then a threshold could be determined. By setting the threshold to a value of 2100, the bracelet will be triggered
on the right moments and will not be triggered when someone is shutting the door loudly.

9.2 Vibration detecting

The wristband also makes use of vibration detecting sensors for vibrating devices like the washing machine or the
dryer and also these sensors should be properly tested.

For the vibration sensor there should also be a testing plan to be able to see if the software works how it is expected
to work. However, this device is less difficult to test than the sound sensor, because there are less vibration in
the surroundings of the sensors than there are other sounds in the surroundings. Therefore it will occur less that
the vibration sensor picks up a sign that it should be triggered. Therefore the plan for this device is to make
vibrations on the levels that are comparable to the vibrations that washing machines and dryers make. The goal
is to see if the sensors can be detected. When this is the case it can be programmed that the sensor should send
a notification to the wristband when the vibration has not been detected for a to be determined period of time.

9.2.1 Vibration detecting: test results

The vibration sensor is tested on a washing machine. A graph is produced by the vibration sensor, while reading
the washing machine vibrations.

In Figure 24, the last 20 minutes of a washing cycle is shown. At the start, there are a few short vibrations.
These vibrations are filtered out by the microcontroller and will not trigger a notification, this is because there is
programmed that Blink will send a notification only when the washing machine is vibrating for 20 seconds and
then stops vibrating for 20 seconds. At about 2/3 in the graph, the vibration sensor is vibrating almost constantly.

18

This indicates the spin-dry part of the washing cycle. The moments where the sensor is not picking up vibrations,
will also be filtered out by the microcontroller.

9.3 WiFi Connection

For this feature the main goal is to make sure that the connection between the sound sensor and the bracelet will
not be disturbed by any other connections or devices. To test this, the following experiment can be done: Other
devices should be put in the room that also use WiFi to connect to each other. A speaker that is connected to
a smartphone via WiFi can be put into the same room as the sound sensor or the bracelet. If the sound sensor
has difficulties with relaying signals to the bracelet, or cannot connect to the bracelet at all, something should be
changed in the programming code. Another test that can be done is checking if all parts with WiFi connection
work how they should work at all places in the house.

9.3.1 WiFi Connection: test results

Blink works on WiFi and is tested many times, so the WiFi connection is automatically also tested many times.
The WiFi connection is working when there are other devices in the same room as Blink, so there were no problems.

9.4 User friendliness

The product should also be tested on user-friendliness. The product is user friendly if it is comfortable to use
and easy to understand. There are a couple of factors which are important for this part. These factors are the
following:

• Difficulty of putting on Blink

• Comfort of user when wearing Blink

• Difficulty of learning to understand Blink

For the user it should be easy to put on and put of the device. To test if Blink is difficult in these actions, a
testing plan for this is needed. The same holds for the comfort of the user when wearing Blink. Blink will go on
your wrist, which is a part of your body that is moved a lot. This means that the device should be comfortable to
wear, in order to be successful. The last factor should also be tested, because for users, it is important to be able
to understand the device rather quickly.

The best way of testing user-friendliness is to have a group of participants test the device. The results of this
group of people can be reflected on a bigger scale to see if Blink will work in real life. In order to have a group of
people test the device, first a list of criteria is needed that the product will be tested on. The test participant can
indicate on a scale how good Blink operates on these criteria:

• I can easily put on Blink

• I can easily take off Blink

• I can easily adjust the tightness of the band

• Blink is not too heavy to wear on the wrist

• Blink feels smooth on the arm and the wrist

• Blink makes comfortable vibrations

• The LED light is comfortable to look at

• I understand how Blink works after a small period of time

After this the participant is asked if there are any things that could be improved in their opinion. This entire
process will be the way of testing how user-friendly Blink is.

9.4.1 User friendliness: test results

The user friendliness of Blink is tested on six users. The users have all filled in a table with the list of criteria
which was made before. The users needed to choose between: disagree (1), disagree-average (2), average (3),
average-agree (4) or agree (5), for each criterion. All the results can be seen in Table 1. In this table, for each
criterion, it is shown how many users have chosen each category (1, 2, 3, 4 and 5).

19

10 Design evaluation

The design goal for this project was to help people with bad hearing. With the help of Blink, people with a hearing
impairment have to be notified when a device in the house makes a sound that needs to be heard. Now that the
design has been made, an evaluation can be made to see if the design goal was reached. In this chapter the design
will therefore be evaluated and it will be seen if the product that was made is how it was desired to be.

10.1 Critical steps in design procedure

In the procedure of designing the final design and end product, there are some critical steps that were the most
important of all the steps. The final design was made, however on some steps a lot of time was needed. These
critical steps are the following:

• Precise soldering

• Making sure everything fits in the 3D printed parts

When making such a small product with all these electronics, one of the key steps is the soldering. All electronics
should be connected in some way and the soldering should also be done very precisely, as there is not much room
for error. Therefore the soldering is a critical step. The soldering was done nicely and all electronics work, however
a bit more space was needed than it was foreseen when the 3D printed parts were designed.

The other critical step of the design process was to fit all electronics and soldered parts in the 3D printed parts.
The 3D printed parts were designed with a small margin such that there was still a bit room for parts that would
stick out a bit more than expected. When all parts were soldered, it became clear that more space was needed.
Making sure that everything fits in the 3D printed parts was therefore also a critical step. The 3D printed parts
had to be adjusted a bit in some parts to make sure that all electronics could fit in the housing.

10.2 Analysis of end product

The end product can now be analyzed and it can be seen if all requirements were put into the design. As can be
seen in Figure 21, all the parts that were desired to be put into the design, also were added to the end product.
This means that on that criteria the design was a success. The goal for the design was that it should be creative,
innovative but also user-friendly. The final design turned out to be as creative as it was wanted. The end product
is quite unique and several components that were added were creative. For instance the Velcro strap. Normally
these straps are used for computer wires to have multiple wires together, however in our case it is used as strap for
around the wrist. This was done because this strap is easily usable and it can also be easily adjusted to someones
wrist. This is one of the examples of why the final design is creative.

The final design also is innovative, as there are not many products with the same functions as Blink. Therefore
the design turned out as innovative as the group wanted it to be. The product has most definitely become user-
friendly. This was also tested when the product was not finalized yet, such that it could be improved already. The
end product has an adjustable strap, such that almost everyone can use the product how it should be used. Also
the 3D printed parts are smooth, so the housing of the wristband feels nice on the wrist and does not hurt when
putting it on and taking it off. Also the device looks quite big, however it is not too heavy. It is a bit more heavy
than the usual watch, however it was not the goal to copy a watch. The device is however pretty big and this
could be a pit less pleasant for some people, however all parts that needed to be in the wristband were put in
with not much extra room, so it could not have been made a lot smaller. For the LED light it was quite bright at
first and during the testing on people, however this was adjusted and is now less bright. Also the vibration motor
was not efficiently tied down during testing, and was therefore not making the best vibrations. The final product
however has the vibration motor on a place where it is tied down nicely. This way the vibrations are also of good
quality.

To conclude, overall the final design was made with a working product as result. This end product was made how
it was wanted to be made, and it has become a creative and user-friendly product.

10.3 Possible improvements and Ideal product

When such a design is made there are always possible improvements that would make the product even better and
that would have more people interested in the product. After naming these possible improvements an ideal end
product could be thought of. Possible improvements are the following:

20

1. The product could be smaller, such that it looks nicer on your wrist and gives more comfort.

2. The product could have more advanced settings, like multiple lights.

3. The product could have a more advanced display.

4. The product could come with an own doorbell.

For the first possible improvement, a lot of parts should be changed.

Figure 22: Ideal product

This means that the improvement should be implemented
very early in the design cycle, at the designing step and de-
tailing step. If the wristband would be made smaller, the
product would be more comfortable to wear, and it would
look way nicer. This could be solved by using a smaller bat-
tery and smaller electronics.

The second improvement also needs some adjustments in
parts. Multiple lights should be ordered and more space
should be made for these lights in the 3D printed parts. This
is an improvement that could be made quite easily with a bit
more time.

The third improvement also needs quite some more design-
ing, as a better display not only needs to be designed and
made, but it also needs a lot more programming than just
a button and LED light. Also this improvement should be
implemented quite early in the design cycle, also at the de-
signing and detailing phase.

The fourth improvement would be that a very own doorbell
would be included in the package of parts that will be deliv-
ered when a client buys Blink. This smart doorbell would already be connected to Blink, such that there is less
effort needed to install the sound sensor. This improvement should be implemented in the design cycle at the step
where the programming takes place, as the doorbell should be programmed to the wristband.

In Figure 22 a render of a product that would be ideal if the design would be further developed can be seen.
This product has a LED strip which looks neat, and also has a smaller button. The overall wristband in this figure
is also much smaller, which would be beneficial. However, it was not feasible to make the ideal product for this
project.

21

References

[1] VeiligheidNL & Erasmus MC. (2020, december). Prevalentie van gehoorverlies in nederland (Nr.
879). VeiligheidNL. https://www.veiligheid.nl/organisatie/publicaties/rapport-prevalentie-van-gehoorverlies-
in-nederland

[2] Apple. (2021, 6 augustus). Apple deelt inzichten gehoorgezondheidsonderzoek. Apple Newsroom (Nederland).
https://www.apple.com/nl/newsroom/2021/03/apple-hearing-study-shares-new-insights-on-hearing-health/

[3] Thingsboard. (2021). GitHub - thingsboard/thingsboard-arduino-sdk: Arduino libarary to connect with
ThingsBoard IoT Platform. https://github.com/thingsboard/thingsboard-arduino-sdk

22

A Appendix: Test results

A.1 Sound detecting

The results of the test with the sound sensor are shown in the graph below:

Figure 23: Door bell sounds

A.2 Vibration detecting

The results of the test with the vibration sensor are shown in the graph below:

Figure 24: Washing machine vibrations

A.3 User friendliness

Criterion Disagree (1) Disagree-average (2) Average (3) Average-agree (4) Agree (5)
I can easily put on
Blink

0 0 2 3 1

I can easily take off
Blink

0 0 3 2 1

I can easily adjust the
tightness of the band

0 0 0 1 5

Blink is not too heavy
to wear on the wrist

0 2 1 2 1

Blink feels smooth on
the arm and wrist

0 1 3 1 1

Blink makes comfort-
able vibrations

1 3 0 2 0

The LED light is com-
fortable to look at

0 1 3 0 2

I understand how
Blink works after a
small period of time

0 0 1 4 1

Table 1: Test results user friendliness

23

B Appendix: Programming code

1 /**

2 * ----------------------

3 * LIBRARY IMPORTS

4 * ----------------------

5 */

6 // Choose which device type we are building

7 #define PROVISION_DEVICE_KEY "m8ngc9rqw9aw60n94ffy"

8 #define PROVISION_DEVICE_SECRET "b4n95o01ovu5vchs8eqf"

9

10 // We need the WiFi library , WiFiManager and ThingsBoard

11 #include "WiFiManager.h"

12 #include "ThingsboardConnect.h"

13

14 #if defined(ESP32)

15 #include "analogWrite.h"

16 #endif

17

18 /**

19 * ----------------------M

20 * GLOBAL VARIABLES

21 * ----------------------

22 */

23 // Set current version

24 #define CURRENT_FIRMWARE_TITLE "Dev"

25 #define CURRENT_FIRMWARE_VERSION "1.1.8"

26

27

28 // Pins for Sensors

29 #define SOUND_SENSOR GPIO_NUM_34

30 #define VIBRATION_SENSOR GPIO_NUM_23

31

32 // Pins for Wristband

33 #define VIBRATION_MOTOR GPIO_NUM_14

34 #define BUTTON GPIO_NUM_2

35

36 #define RGB_RED GPIO_NUM_25

37 #define RGB_GREEN GPIO_NUM_33

38 #define RGB_BLUE GPIO_NUM_32

39

40 #define BATTERY_LEVEL GPIO_NUM_35

41

42 // We create the WifiManager

43 WiFiManager wifiManager;

44

45 // Compute a unique device name based on the chip id that has been set by the factory

46 String getUniqueDeviceName () {

47 #if defined(ESP8266)

48 String deviceId = String(ESP.getChipId (),HEX);

49 #elif defined(ESP32)

50 uint32_t id = 0;

51 for(int i=0; i<17; i=i+8) {

52 id |= ((ESP.getEfuseMac () >> (40 - i)) & 0xff) << i;

53 }

54 String deviceId = String(id ,HEX);

55 #endif

56 deviceId.toUpperCase ();

57 return "Blink_" + deviceId;

58 }

59

60 String DEVICE_NAME = getUniqueDeviceName ();

61

62

63 ThingsboardConnect tb(CURRENT_FIRMWARE_TITLE , CURRENT_FIRMWARE_VERSION , DEVICE_NAME.c_str(),

PROVISION_DEVICE_KEY , PROVISION_DEVICE_SECRET);

64

65 const size_t rpcHandlersSize = 3;

66 RPCHandler rpcHandlers[rpcHandlersSize] = {

67 { "notification", rpc_notification },

68 { "test_notification", rpc_test_notification },

69 { "reboot", rpc_reboot }

70 };

71

24

72 /**

73 * ----------------------

74 * PROGRAM SETUP

75 * ----------------------

76 */

77

78 /**

79 * Setup function which will run once at start

80 */

81 void setup() {

82 // Set -up serial communication which can be used for debugging when connected to a

computer

83 Serial.begin (115200);

84

85 setup_pins ();

86

87 // Setup wifi connection using WifiManager

88 setup_wifi ();

89

90 // When we receive an update from the server that the attributes have changed , the

process_attributes function will be called

91 tb.useAttributes(process_attributes);

92 tb.useRPC(rpcHandlers , rpcHandlersSize);

93 tb.setAttributes("bl_device_type ,bl_sensor_threshold");

94 }

95

96 /**

97 * Setup the Wi-Fi connection using Wi -Fi manager

98 * When this function finishes , we guaranteed have a Wi-Fi connection ,

99 * because if Wi-Fi fails , we automatically reboot

100 */

101 void setup_wifi () {

102

103 // We customize the wifi manager menu with only the pages we need

104 const char* menu[] = {"wifi","info","sep","restart"};

105 wifiManager.setMenu(menu ,9);

106 wifiManager.setShowInfoUpdate(false);

107

108 wifiManager.setHostname(DEVICE_NAME.c_str());

109 wifiManager.setTitle("Blink 1.0");

110

111 // Allow other code to execute while we are awaiting wifi connection.

112 wifiManager.setConfigPortalBlocking(false);

113

114 // Set blue color to indicate wifi connecting

115 rgb_color (0,0,255);

116

117 // Trigger the logic of WiFiManager to connect to the Wi-Fi network ,

118 // or if it fails , let the user configure a new Wi-Fi network

119 wifiManager.autoConnect(DEVICE_NAME.c_str());

120

121 if(! wifiManager.autoConnect(DEVICE_NAME.c_str ())) {

122 unsigned long config_start = millis ();

123 unsigned long button_pressed_time = millis ();

124

125 int color = 0;

126 int animation = 0;

127

128 while (1){

129 // If 3 minutes have passed , try to restart

130 if(millis () - config_start > 180000){

131 Serial.println("No WiFi connection was established. Rebooting ...");

132 delay (1000);

133 ESP.restart ();

134 }

135

136 if(animation == 0)

137 color ++;

138 else

139 color --;

140

141 if(color >= 4096 && animation == 0)

142 animation = 1;

143 else if(color <= 0 && animation == 1)

25

144 animation = 0;

145

146 rgb_color (0,0,color / 16);

147

148 int buttonPressed = digitalRead(BUTTON);

149 if(buttonPressed == HIGH && button_pressed_time == 0)

150 button_pressed_time = millis ();

151 else if(buttonPressed == HIGH && button_pressed_time != 0 && millis () -

button_pressed_time > 5000)

152 poweroff ();

153 else if(buttonPressed == LOW)

154 button_pressed_time = 0;

155

156 // Check if wifi was connected succesfully

157 if(wifiManager.process ())

158 break;

159

160 yield(); // watchdog

161 }

162 }

163

164 rgb_color (0,0,0);

165

166 // Turn of the wifi acccespoint (which WifiManager should do, but does not always do for

some reason)

167 WiFi.softAPdisconnect(false);

168 WiFi.enableAP(false);

169

170 //Start web portal for config access after the device has started

171 wifiManager.startWebPortal ();

172 }

173

174 void rgb_color(int red , int green , int blue) {

175 analogWrite(RGB_RED ,map(red ,0,255, 0, 64));

176 analogWrite(RGB_GREEN ,map(green ,0,255, 0, 64));

177 analogWrite(RGB_BLUE ,map(blue ,0,255, 0, 64));

178 }

179

180 /**

181 * Setup logic for the wristband

182 */

183 void setup_pins () {

184 // Setup pins for wristband

185 pinMode(RGB_RED , OUTPUT);

186 pinMode(RGB_GREEN , OUTPUT);

187 pinMode(RGB_BLUE , OUTPUT);

188

189 for(int i = 0; i < 255; i++) {

190 rgb_color(0,i,0);

191 delay (4);

192 }

193

194 rgb_color (0,0,0);

195

196 pinMode(VIBRATION_MOTOR , OUTPUT);

197 digitalWrite(VIBRATION_MOTOR , false);

198

199 pinMode(BATTERY_LEVEL , INPUT);

200 pinMode(BUTTON , INPUT);

201

202 pinMode(GPIO_NUM_0 , INPUT);

203 pinMode(GPIO_NUM_2 , INPUT);

204 pinMode(GPIO_NUM_4 , INPUT);

205 pinMode(GPIO_NUM_15 , INPUT);

206

207 // Setup pins for sound sensor

208 pinMode(SOUND_SENSOR , INPUT);

209

210 // Setup pins for vibration sensor

211 pinMode(VIBRATION_SENSOR ,INPUT);

212 }

213

214 String deviceType;

215 int sensor_threshold = 0;

26

216

217 // We process the attributes (user configuration options) from ThingsBoard

218 void process_attributes(const Shared_Attribute_Data &data) {

219 if(data.containsKey("bl_sensor_threshold"))

220 sensor_threshold = data["bl_sensor_threshold"].as<int >();

221 if(data.containsKey("bl_device_type"))

222 deviceType = data["bl_device_type"].as<String >();

223 }

224

225

226 /**

227 * ----------------------

228 * PROGRAM LOOP

229 * ----------------------

230 */

231

232 bool pending_reboot = false;

233

234 bool thingsboard_disconnected = false;

235

236 unsigned long previous_processing_time = millis ();

237

238 /**

239 * Loop function which will be called repeatedly

240 */

241 void loop() {

242 if(pending_reboot) {

243 Serial.println("Rebooting ...");

244 delay (1000);

245 ESP.restart ();

246 }

247

248 // Call wifimanager loop handle logic

249 wifiManager.process ();

250 // Call thingsboard (and WiFi) loop handle logic

251 if(!tb.handle ()) {

252 rgb_color (0,0,20);

253 thingsboard_disconnected = true;

254 } else if(thingsboard_disconnected) {

255 rgb_color (0,0,0);

256 thingsboard_disconnected = false;

257 }

258

259 // Call the correct loop function depending on the configured DEVICE_TYPE

260 if(deviceType == "Wristband")

261 loop_wristband ();

262 else if(deviceType == "Vibration Sensor" || deviceType == "Sound Sensor")

263 loop_sensor ();

264 }

265

266

267 unsigned long button_pressed_time = 0;

268 unsigned long button_released_time = 0;

269

270 bool notification_active = false;

271 int battery_percentage = 0;

272

273 /**

274 * Loop logic for the wristband

275 */

276 void loop_wristband () {

277 if (millis () - previous_processing_time >= 500) {

278 previous_processing_time = millis ();

279 int battery_level = analogRead(BATTERY_LEVEL);

280 float battery_voltage = battery_level / 4096.0 * 6.9;

281 battery_percentage = int((constrain(battery_voltage , 3.7, 4.15) - 3.7) / 0.45 * 100)

;

282 tb.sendTelemetry("battery_level",battery_level);

283 tb.sendTelemetry("battery_percentage",battery_percentage);

284 tb.sendTelemetry("battery_voltage",battery_voltage);

285 }

286

287 int buttonPressed = digitalRead(BUTTON);

288 if(buttonPressed == HIGH && button_pressed_time == 0) {

27

289 button_pressed_time = millis ();

290 } else if(buttonPressed == LOW && button_pressed_time != 0) {

291 button_pressed_time = 0;

292

293 if(millis () - button_released_time > 200) {

294 if(notification_active)

295 rgb_color (0,0,0);

296 else {

297 if(battery_percentage > 60)

298 rgb_color (0,255,0);

299 else if(battery_percentage > 20)

300 rgb_color (255 ,255 ,0);

301 else

302 rgb_color (255,0,0);

303 delay (700);

304 rgb_color (0,0,0);

305 }

306 notification_active = false;

307 }

308

309 button_released_time = millis ();

310 } else if(button_pressed_time != 0 && millis () - button_pressed_time > 5000) {

311 poweroff ();

312 }

313 }

314

315 RPC_Response rpc_notification(const RPC_Data &data) {

316 Serial.println("Received Notification");

317

318 // Extract rgb colors + vibration pattern from RPC data

319 int rgbRed = data["bl_rgb_red"].as <int >();

320 int rgbGreen = data["bl_rgb_green"].as <int >();

321 int rgbBlue = data["bl_rgb_blue"].as<int >();

322 int pattern = data["bl_vibration_pattern"].as<int >();

323

324 // Set the LED to the correct colors

325 rgb_color(rgbRed ,rgbGreen ,rgbBlue);

326

327 // Trigger the vibration motor to vibrate the preprogrammed pattern

328 vibrate_pattern(pattern);

329

330 notification_active = true;

331

332 return RPC_Response ();

333 }

334

335 void poweroff () {

336 Serial.println("Button long -pressed. Shutting down ...");

337

338 // Set the LED to RED for 1 second to indicate to the user that the device is turning off

339 for(int i = 255; i > 0; i--) {

340 rgb_color(i,0,0);

341 delay (4);

342 }

343 rgb_color (0,0,0);

344

345 // Wait for the user to release the button such that the device does not immediately wake

back up

346 delay (3000);

347

348 // Set ESP to wakeup when button is pressed

349 esp_sleep_enable_ext0_wakeup(BUTTON , 1);

350

351 // Put device into deep sleep

352 esp_deep_sleep_start ();

353 }

354

355 void vibrate_pattern(int pattern) {

356 if(pattern == 0) {

357 digitalWrite(VIBRATION_MOTOR , true);

358 delay (1000);

359 digitalWrite(VIBRATION_MOTOR , false);

360 } else if(pattern == 1) {

361 digitalWrite(VIBRATION_MOTOR , true);

28

362 delay (500);

363 digitalWrite(VIBRATION_MOTOR , false);

364 delay (100);

365 digitalWrite(VIBRATION_MOTOR , true);

366 delay (500);

367 digitalWrite(VIBRATION_MOTOR , false);

368 } else if(pattern == 2) {

369 digitalWrite(VIBRATION_MOTOR , true);

370 delay (800);

371 digitalWrite(VIBRATION_MOTOR , false);

372 delay (100);

373 digitalWrite(VIBRATION_MOTOR , true);

374 delay (100);

375 digitalWrite(VIBRATION_MOTOR , false);

376 }

377 }

378

379 RPC_Response rpc_test_notification(const RPC_Data &data) {

380 tb.sendRPC("notification");

381 return RPC_Response ();

382 }

383

384 RPC_Response rpc_reboot(const RPC_Data &data) {

385 pending_reboot = true;

386 return RPC_Response("rebooting", true);

387 }

388

389 bool didVibrate = false;

390 int maxSoundLevel = 0;

391

392 bool didSendNotification = false;

393

394 unsigned long startedVibrating = 0;

395 unsigned long stoppedVibrating = 0;

396

397 unsigned long startedVibratingSmooth = 0;

398 unsigned long stoppedVibratingSmooth = 0;

399

400 /**

401 * Loop logic for a sensor

402 */

403 void loop_sensor () {

404 if(deviceType == "Sound Sensor") {

405 // Read the sound level from the sensor

406 int soundLevel = analogRead(SOUND_SENSOR);

407

408 // We keep track of the maximum sound level that was received

409 if(soundLevel > maxSoundLevel)

410 maxSoundLevel = soundLevel;

411

412 // We call this processing every 500ms

413 if (millis () - previous_processing_time >= 500) {

414 previous_processing_time = millis (); // Reset timer

415

416 // Send data back to Thingsboard to be able to show this in a graph to the user

417 tb.sendTelemetry("sensor_value",maxSoundLevel);

418 tb.sendTelemetry("sensor_threshold",sensor_threshold);

419

420 // Send a notification if the sound level is above the threshold

421 if(maxSoundLevel > sensor_threshold && !didSendNotification) {

422 tb.sendRPC("notification");

423

424 // Set this flag to true to make sure we are not sending multiple notifications

right after eachother

425 didSendNotification = true;

426 } else

427 didSendNotification = false;

428

429 // Reset the max sound level

430 maxSoundLevel = 0;

431 }

432 } else if(deviceType == "Vibration Sensor") {

433 // Read the vibration sensor

434 bool vibrating = digitalRead(VIBRATION_SENSOR);

29

435

436 // Keep track if the sensor vibrated

437 // We will check if it vibrated every 500ms

438 didVibrate = didVibrate || vibrating;

439

440 // We call this processing every 500ms

441 if (millis () - previous_processing_time >= 500) {

442 previous_processing_time = millis (); // Reset timer

443

444 // Send data back to Thingsboard to be able to show this in a graph to the user

445 tb.sendTelemetry("sensor_value",didVibrate);

446

447 /**

448 * The following logic smooths out the vibrations ,

449 * making sure a notification is only sent if the vibration sensor vibrated

450 * for at least 20s and then stopped for at least 20s

451 */

452 if(startedVibrating == 0 && didVibrate) {

453 startedVibrating = millis ();

454 stoppedVibrating = 0;

455 } else if(stoppedVibrating == 0 && startedVibrating != 0 && !didVibrate) {

456 stoppedVibrating = millis ();

457 startedVibrating = 0;

458 }

459

460 if(startedVibrating != 0 && millis () - startedVibrating > 20000 &&

startedVibratingSmooth == 0) {

461 startedVibratingSmooth = startedVibrating;

462 stoppedVibratingSmooth = 0;

463 }

464

465 if(stoppedVibrating != 0 && millis () - stoppedVibrating > 20000 &&

stoppedVibratingSmooth == 0 && startedVibratingSmooth != 0) {

466 stoppedVibratingSmooth = stoppedVibrating;

467 startedVibratingSmooth = 0;

468

469 // Send notification if conditions are met

470 tb.sendRPC("notification");

471 }

472

473 didVibrate = false;

474 }

475 }

476

477 }

30

	Group effectiveness
	First weeks of the project
	Designing
	Last weeks of the project
	Improvements and strengths

	Design goal
	Functional design and solutions
	MoSCoW Method
	Must have
	Should have
	Could have
	Won’t have

	Design concepts
	Smart Wristband Concept
	Pro's and con's

	Smart Glasses Concept
	Pro's and con's

	Hearing box concept
	Pro's and con's

	Final design concept
	Technical specification
	Detailing
	Detailing the 3D printed parts
	Detailing the wristband
	Detailing the sensors

	Realization
	Testing Electronics
	LED RGB
	Button
	Vibration motor
	Sensors

	Fit-testing the electronics
	PfP / Soldering
	Bill of materials
	The final design

	Test plan and results
	Sound detecting
	Sound detecting: test results

	Vibration detecting
	Vibration detecting: test results

	WiFi Connection
	WiFi Connection: test results

	User friendliness
	User friendliness: test results

	Design evaluation
	Critical steps in design procedure
	Analysis of end product
	Possible improvements and Ideal product

	Appendix: Test results
	Sound detecting
	Vibration detecting
	User friendliness

	Appendix: Programming code

